Second Order Superintegrable Systems in Three Dimensions
نویسندگان
چکیده
منابع مشابه
Second Order Superintegrable Systems in Three Dimensions
A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with potential that admits 2n− 1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the motion are all quadratic, the system is second order superintegrable. Such systems have remarkable p...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملSuperintegrable Systems on Sphere
We consider various generalizations of the Kepler problem to three-dimensional sphere S, a compact space of constant curvature. These generalizations include, among other things, addition of a spherical analog of the magnetic monopole (the Poincaré–Appell system) and addition of a more complicated field, which itself is a generalization of the MICZ-system. The mentioned systems are integrable —...
متن کاملMagnetic Phase Diagram of Hubbard Model in Three Dimensions: the Second-Order Local Approximation
A local, second-order (truncated) approximation is applied to the Hubbard model in three dimensions. Lowering the temperature, at half-filling, the paramagnetic ground state becomes unstable towards the formation of a commensurate spin-density-wave (SDW) state (antiferromagnetism) and sufficiently far away from half-filling towards the formation of incommensurate SDW states. The incommensurate-...
متن کاملExtrapolation for the Second Order Elliptic Problems by Mixed Finite Element Methods in Three Dimensions
where ∇ and ∇· are the gradient and divergence operators, Ω ⊂ R is an open bounded cubic domain with boundary Γ, n indicates the outward unit normal vector along Γ, A−1 = (αij)3×3 is a full positive definite matrix uniformly in Ω. Mixed finite element methods [1] should be employed to discretize the system (1.1). The main content of this paper is to present an analysis for the extrapolation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications
سال: 2005
ISSN: 1815-0659
DOI: 10.3842/sigma.2005.015